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SUMMARY

Neurons often integrate information from multiple
parallel signaling streams. How a neuron combines
these inputs largely determines its computational
role in signal processing. Experimental assessment
of neuronal signal integration, however, is often con-
founded by cell-intrinsic nonlinear processes that
arise after signal integration has taken place. To
overcome this problem and determine how ganglion
cells in the salamander retina integrate visual con-
trast over space, we used automated online analysis
of recorded spike trains and closed-loop control
of the visual stimuli to identify different stimulus
patterns that give the same neuronal response.
These iso-response stimuli revealed a threshold-
quadratic transformation as a fundamental nonline-
arity within the receptive field center. Moreover,
for a subset of ganglion cells, the method revealed
an additional dynamic nonlinearity that renders
these cells particularly sensitive to spatially homo-
geneous stimuli. This function is shown to arise
from a local inhibition-mediated dynamic gain con-
trol mechanism.

INTRODUCTION

A fundamental building block of neuronal circuits is the conver-

gence of parallel streams of information onto single neurons.

How a neuron combines these inputs into an output of its own

shapes the computation that is performed by the circuit. Obtain-

ing a functional description of how incoming signals are pooled

is therefore a crucial step for understanding neuronal informa-

tion processing. Here, we study the rules of signal integration

in retinal ganglion cells and ask how these cells combine stim-

ulus components from different locations within their receptive

field centers.

In the retina, research on spatial integration of visual stimuli

has focused on distinguishing linear and nonlinear integration
by X-type and Y-type ganglion cells, respectively (Enroth-Cugell

and Robson, 1966; Hochstein and Shapley, 1976). Less is

known, on the other hand, about what functional types of nonlin-

earities determine signal integration in the retina (Schwartz

and Rieke, 2011). Parameterized model fits have suggested

that Y-cell characteristics result from half-wave rectification in

spatial subunits (Hochstein and Shapley, 1976; Victor and Shap-

ley, 1979; Victor, 1988; Baccus et al., 2008). Bipolar cell input

into the ganglion cells has been identified as the likely source

of this rectification (Demb et al., 2001), and rectified input

currents have been directly measured in neurons of the inner

retina (Molnar et al., 2009). Yet, detailed quantitative character-

izations of the nonlinearities that govern stimulus integration

over space are still lacking, despite their importance for estab-

lishing specific visual functions that are achieved by different

types of retinal ganglion cells (Ölveczky et al., 2003; Gollisch

and Meister, 2008; Münch et al., 2009; Gollisch and Meister,

2010).

This calls for methods to directly determine how ganglion

cells combine their inputs from different parts of their receptive

fields. However, assessments of stimulus integration by simply

measuring stimulus-response functions are easily confounded

by the presence of additional nonlinear processes. For example,

neuronal responses will typically show a nonlinear dependence

on stimulus intensity simply because of the spiking nonlinearity,

leading to thresholding and saturation of the response. In addi-

tion, the neuron’s intrinsic ionic conductances can contribute

to a nonlinear gain of the membrane potential. These nonlinear-

ities occur after signal integration has taken place and therefore

reveal little about signal integration itself.

To overcome these limitations, we here present an approach

for measuring signal integration in retinal ganglion cells while

avoiding effects of cell-intrinsic nonlinearities. This is achieved

by identifying different stimulus patterns that all yield the same

neuronal response. These iso-response stimuli reveal whether

signal integration happens linearly or otherwise which types of

nonlinearities occur (Gollisch et al., 2002; Benda et al., 2007).

To efficiently measure iso-response stimuli, we developed a

closed-loop experimental design in which extracellularly re-

corded spike trains are automatically analyzed so that the

presented visual stimuli are tuned until the designated response

is reached. For retinal ganglion cells in the salamander retina, this
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Figure 1. Iso-Response Curves as a Tool for

Assessing Stimulus Integration

(A) A subunit model, which takes two inputs s1
and s2 and generates a response r(s1,s2) (top)

and the corresponding two-dimensional stimulus-

response plot (bottom). Here, the ganglion cell (G)

simply performs a linear summation of the sub-

unit signals. Correspondingly, the iso-response

curves, shown below, are straight lines.

(B) Same as (A), but with a subunit model

that transforms each subunit input according to

a threshold-quadratic nonlinearity. Correspond-

ingly, the iso-response curves now have segments

parallel to the axes, representing the threshold

operation, and are circular in the central region,

representing the summation of squared positive

inputs.

(C) Sample stimulus-response curves along a

fixed direction in stimulus space, here the direction

given by s1 = s2, for the linear subunit model

(brown) and the threshold-quadratic subunit

model (purple). The curves are also highlighted

in (A) and (B), respectively. The sigmoid shapes of

the curves follow from the output nonlinearities of

the models.

(D) Stimulus structure for the present study. The

two input components s1 and s2 correspond to

the contrast values displayed in the two halves of

a ganglion cell’s receptive field center.
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method revealed that signals are integrated nonlinearly over the

receptive field center. The corresponding nonlinearity resembles

a threshold-quadratic transformation of the incoming signals. In

addition, for a subset of ganglion cells, the method revealed

a further nonlinear operation that provides these cells with a

particular sensitivity for homogeneous stimulation of the recep-

tive field. These cells are thus especially suited to detect large
334 Neuron 73, 333–346, January 26, 2012 ª2012 Elsevier Inc.
objects. The nonlinearity that mediates

this function is shown to arise from an

inhibition-mediated local gain control

mechanism.

RESULTS

Utility of Iso-Response Stimuli
Neurons process information by com-

bining multiple inputs and generating

their own output accordingly. As a

minimal circuit for neural computation,

let us therefore consider a neuron that

integrates two input signals (Figure 1).

Even if the inputs are simply summed

in a linear fashion (Figure 1A), the final

response is typically nonlinear because

the output neuron contributes its own,

intrinsic nonlinear transformation, for

example, through a spike generation

mechanism that imposes a threshold

or response saturation. This nonlinearity

may easily appear to dominate the
stimulus-response function and give it a similar general ap-

pearance even for a fundamentally different model of stimulus

integration, for example, when inputs are thresholded and

squared before pooling (Figure 1B). For both considered models

of Figure 1, the response rises with increasing overall stimulus

intensity in a sigmoid fashion (Figure 1C), as determined by the

intrinsic nonlinearitities of each output neuron.



Figure 2. Online Identification of Iso-Response

Stimuli

(A) Illustration of stimulus space. The two axes denote the

contrast values of s1 and s2, respectively. For positive

contrast values, the corresponding stimulus area turns

brighter; for negative contrast values, it turns darker, with

zero contrast denoting the gray background level. Several

sample stimuli are shown at the corresponding locations in

the plot. Along the axes, only one half of the receptive field

center is stimulated. Along the diagonal toward the lower

left, s1 and s2 are equal, and the receptive field center is

thus stimulated homogeneously. Individual searches were

performed in the radial directions of this stimulus space.

(B) Voltage trace measured for a single stimulus presen-

tation (top) and corresponding time course of the stimulus

(bottom). Spikes were detected as excursions of the

voltage trace below a selected threshold (horizontal

dashed line). The stimulus here was a 500ms presentation

of negative contrast (dimming) for s1 and positive contrast

(brightening) for s2.

(C) Sample data of an individual line search for a pre-

defined spike count. Spike counts were measured for

different overall contrast values while keeping a fixed ratio

of s1 and s2, corresponding to a fixed radial direction in

stimulus space. Data points near the target response were

fitted by a straight line (black line). The horizontal dotted

line shows the predefined target response, here six spikes.

(D) Line search for a predefined first-spike latency, dis-

played in the same way as (C). Here, the target latency

was 120 ms and the data were fitted by an exponential

curve (black line). The inset shows a zoom-in of the data

close to the target latency.
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Despite these similarities in the general shape of the

stimulus-response relations, the characteristic differences of

stimulus integration in the two models become strikingly

apparent when one considers the contour lines of the stim-

ulus-response plot, that is, the lines along which the response

of the output neuron stays the same (Figures 1A and 1B,

shown below the stimulus-response surface plots). The shape

of these iso-response curves is a clear signature of the under-

lying signal integration or, in other words, of the arithmetic rule

with which the output neuron combines its inputs. In the

simplest case, linear summation of inputs is reflected by

straight lines in the iso-response curves (Figure 1A). The

circular part of the iso-response curves in Figure 1B, on the

other hand, shows the summation of squared positive inputs,

whereas the line segments that run parallel to the axes indicate

the thresholding of negative inputs. Iso-response curves thus

reveal the nature of stimulus integration independently of the

neuron’s intrinsic output nonlinearity; the output nonlinearity

simply affects the response equally for all stimuli along an

iso-response curve and thus does not influence the curve’s

shape.

To assess the nature of signal integration within the receptive

field center of retinal ganglion cells, we developed an approach

to measure these iso-response curves. We used a stimulus

layout that subdivided the receptive field center of a ganglion

cell into two halves and stimulated the cell with different levels

of light intensity in these two regions (Figure 1D). Iso-response

curves then consisted of those pairs of visual contrast in the

two receptive field halves (measured relative to the mean
background light intensity) that yielded a fixed, predefined spike

response of the ganglion cell.

Measuring Iso-Response Stimuli
Seeking iso-response stimuli poses an obvious experimental

challenge; instead of measuring responses for predefined

stimuli, we need to find stimuli for predefined neuronal re-

sponses. To achieve this, we devised a closed-loop experi-

mental design to automatically and quickly tune stimulus in-

tensities toward the desired response, similar to previous

applications in the auditory system (Gollisch et al., 2002; Gollisch

and Herz, 2005). We recorded spiking activity extracellularly

from individual ganglion cells in isolated salamander retinas.

For every analyzed cell, we first used the online analysis to

map out the location and size of the cell’s receptive field center.

After dividing the receptive field center into two halves, we

presented simultaneous short steps in light intensity in both

halves on a gray background. Each stimulus was thus defined

by a pair of contrast values (Figure 2A).

For each stimulus presentation, a ganglion cell typically re-

sponded with a burst of spikes, which were detected automati-

cally with a simple threshold operation (Figure 2B). We first set

out to search for combinations of contrasts that elicited the

same average spike count in this burst. As the spike count

typically provides the basis for calculating a neuron’s average

firing rate, we refer to these contrast combinations as iso-rate

stimuli. As an alternative, we also searched for contrast com-

binations that resulted in the same average first-spike latency,

thus obtaining iso-latency stimuli. We performed individual
Neuron 73, 333–346, January 26, 2012 ª2012 Elsevier Inc. 335
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searches by fixing the ratio of the two contrast levels and then

varying the overall contrast level to perform a simple line search

(Figures 2C and 2D). As spike count increased and first-spike

latency decreased monotonically for increasing overall contrast

in the measured range, the iso-rate and iso-latency stimuli could

be reliably identified. This procedure was then performed for

several different ratios of the two contrast levels.

Spatial Integration Is Nonlinear
We visualize the obtained iso-response stimuli in the two-

dimensional stimulus space that is given by the contrast values

in the two receptive field halves (Figure 2A). The vast majority

of ganglion cells in the salamander retina are dominated by

Off-type responses (Burkhardt et al., 1998; Segev et al., 2006;

Geffen et al., 2007), and we therefore focused on Off-type

ganglion cells in this work. Figures 3A–3C show measured

iso-response curves for three representative ganglion cells.

Iso-latency curves (red lines) always looked qualitatively similar.

In particular, the curves were approximately parallel to the

axes in those regions of stimulus space where one half of the

receptive field experienced an increase in light intensity. This

means that for a stimulus that contained both ‘‘On’’ and ‘‘Off’’

components in different parts of the receptive field, the strength

of the ‘‘On’’ component had virtually no effect on the latency; this

component was apparently cut off by a threshold nonlinearity,

providing half-wave rectification of the input signal.

In that region of stimulus space where both receptive field

halves experienced negative contrast, the iso-latency curves

had an approximately circular shape. This indicated that two

‘‘Off’’ components of a stimulus were combined nonlinearly

and that the nonlinearity approximately corresponded to a sum

of squares. Indeed, we could fit the iso-response curves by a

minimal model (Figure 1) where each of the two input signals

is transformed by a parameterized nonlinearity (see Experi-

mental Procedures) before summation by the ganglion cell.

As expected, the obtained nonlinearities generally resembled

threshold-quadratic functions (insets in Figures 3A–3C, red

lines): nonpreferred signals are half-wave rectified by a threshold,

and preferred signals are squared before summation. For some

cells, rectification was incomplete, as seen by the shallow, but

nonzero slope of the obtained nonlinearities for nonpreferred

signals (Figure 3B).

Iso-rate curves (Figures 3A–3C, blue lines) displayed more

variable shapes than iso-latency curves. For some cells, the

iso-rate curve had approximately the same shape as the cell’s

iso-latency curve (Figures 3A and 3B), also indicating a nonline-

arity of stimulus integration that is approximately threshold-

quadratic or sometimes close to threshold-linear (insets in

Figures 3A and 3B, blue lines). For other ganglion cells, however,

the iso-rate curves displayed a notably different shape (Fig-

ure 3C), characterized by a notch along the lower-left diagonal.

This notch gave the curves a distinctive nonconvex shape. It

showed that relatively little contrast was required for these cells

to achieve the predefined spike count when both receptive field

halves were stimulated with similar (negative) contrast. Stimula-

tion of only one receptive field half, on the other hand, required

much larger contrast values. Thus, when considering the spike

count, these ganglion cells displayed exceptional sensitivity to
336 Neuron 73, 333–346, January 26, 2012 ª2012 Elsevier Inc.
spatially homogeneous stimulation of the receptive field, and in

the followingwewill therefore refer to these cells as homogeneity

detectors.

The classification of iso-rate curves into convex and noncon-

vex curves did not depend on the chosen target spike count.

Convex iso-rate curves appeared to be largely scaled versions

of each other if measured for the same cell at different spike

counts (Figure 3D), whereas iso-rate curves of homogeneity

detectors displayed the characteristic nonconvex shape over

a range of different spike counts (Figure 3E). However, the notch

in the iso-rate curve became more pronounced with higher

target spike counts, a fact to which we will return when discus-

sing the underlying mechanisms. In addition, the nonconvex

shape of homogeneity detectors did not depend on the exact

stimulus layout; it proved robust to changes in stimulation radius

or insertion of a gap between the two stimulus areas (Figure 3F).

To quantify the degree towhich individual iso-response curves

were convex or nonconvex, we defined a form factor that

compares the radial distance of the curve along the lower-left

diagonal to its linear prediction obtained from the intersections

of thecurvewith the twoaxesof theplot (seeExperimental Proce-

dures for details). In particular, this form factor is smaller than

unity for a nonconvex iso-rate curve as in Figure 3C and larger

than unity for the iso-response curves of Figures 3A and 3B.

Calculating the form factor for all measured iso-response curves

confirmed that iso-latency curves always had similar convex

shapes (Figure 3G). In fact, their form factors clustered around

their average value of 1.38 (standard deviation: 0.08), close to

the value of
ffiffiffi

2
p

z1:41, which is expected from quadratic integra-

tion of preferred stimuli. Form factors of iso-rate curves, on the

other hand, could be roughly divided into two groups with values

larger and smaller than unity, respectively (Figure 3H). This shows

that homogeneity detectors were not a rare exception in our

recordings; 20 out of 45 measured cells had an iso-rate form

factor smaller than unity, indicative of the characteristic noncon-

vex iso-rate curve. Interestingly, these small iso-rate form factors

occurred almost exclusively for cells with large receptive fields

(Figure 3I), supporting the idea that homogeneity detectors

form a particular subclass of ganglion cells.

Spatial Scale of Nonlinearities
In order to search for the mechanisms underlying the observed

nonlinear features of stimulus integration, we first probed the

spatial scale at which these occur. To this end, we spatially

interleaved the two stimulus components by arranging them in

a checkerboard fashion with various sizes of the checkerboard

squares. We then measured iso-rate curves for these inter-

leaved stimulus components. We found that stimulus integration

generally became linear if the squares were sufficiently small

(Figure 4): the thresholding of nonpreferred positive contrasts

disappeared (Figure 4A and 4B), and homogeneity detectors

lost the nonconvex shape of their iso-rate curves (Figure 4B).

These data are consistent with a subunit model (Hochstein and

Shapley, 1976; Enroth-Cugell and Freeman, 1987; Victor, 1988;

Crook et al., 2008), in which the receptive field is composed of

linear subunits whose outputs are nonlinearly combined.

To obtain an estimate of the spatial scale of the subunits, we

quantified the amount of rectification depending on the size of



Figure 3. Iso-Response Curves of Retinal Ganglion Cells

(A–C) Iso-rate (blue) and iso-latency curves (red) from three different sample ganglion cells. Here and in subsequent plots, error bars are drawn in the radial

direction, corresponding to the direction of measurement, and denote 95% confidence intervals, obtained from fitting the data points of the line searches.

Predefined target responses were 6 spikes and 170 ms (A); 4 spikes and 150 ms (B); 8 spikes and 120 ms (C). Insets show the corresponding nonlinearities

obtained from a subunit model such as in Figures 1A and 1B. Note that preferred stimuli are displayed as positive values on the x axis of the insets even though

they correspond to negative contrast, as these neurons are Off-type ganglion cells. An example with slight deviations from the threshold-quadratic nonlinearity

is shown in (B); rectification is incomplete here, and the iso-rate curve yields a rather linear than quadratic summation of negative contrast. For the nonconvex

iso-rate curve of (C), no nonlinearity was determined, as the curve is not well described by the static subunit model. Note that the iso-response curves are not

always symmetric with respect to the two stimulus components; this results from slight misalignment of the stimulus with the receptive field center and from

asymmetries in the receptive field structure.

(D) Iso-rate curves for different target spike counts obtained from a single ganglion cell with convex iso-rate curves. Target spike counts were two, four, and six

spikes, in order of increasing distance of the curves from the origin.

(E) Iso-rate curves for different target spike counts obtained from a single homogeneity detector. Target spike counts were three, four, five, and six spikes, in order

of increasing distance of the curves from the origin. The inset shows a zoom-in of the central region of the iso-rate curves.

(F) Iso-rate curves from a single homogeneity detector for stimulus layouts with a 100 mm gap between the two stimulation areas (light blue) and for stimulation

area with diameter reduced by 60% (green), compared to control condition (dark blue).

(G) Histogram of form factors obtained from iso-latency curves. The values cluster near
ffiffiffi

2
p

, the expected value for convex, circular curves.

(H) Histogram of form factors obtained from iso-rate curves. Values larger and smaller than unity indicate convex and nonconvex iso-rate curves, respectively.

Note that the total cell count here is higher than in (G) because iso-latency curves were not measured for all cells.

(I) Scatter plot of form factors from iso-rate curves against receptive field diameter. Small form factors were found almost exclusively for ganglion cells with rather

large receptive field centers. The data points corresponding to the cells shown in (A)–(C) are marked by additional black circles.
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Figure 4. Spatial Scale of Nonlinearities

(A) Iso-rate curves for the control condition (blue) and for two checkerboard arrangements of the two stimulus components with edge length of the squares of

150 mm (green) and 60 mm (orange). Target response: four spikes. Note that stimuli are identical along the diagonal toward the lower left (s1 = s2) for the three

stimulus layouts; correspondingly the three iso-rate curves meet on this diagonal.

(B) Analogous to (A), but for a cell with a nonconvex iso-rate curve under control conditions. Orange curve: checkerboard arrangement with edge length of 75 mm.

Target response: six spikes.

(C) Dependence of rectification on spatial scale. We separately fitted the two tail ends of the iso-rates curves by straight lines to determine slope values of s1
versus –s2 and s2 versus –s1, respectively. Values of zero and unity correspond to perfect half-wave rectification and to the absence of rectification, respectively.

Each data point shows the average of these two slope values for each iso-response curve, plotted against the spatial scale of the stimulus, defined as the square

root of the area of the individual stimulus subregions. For data from the checkerboard arrangement (green points), the spatial scale is the edge length of the

stimulus squares. The data from control conditions (blue points) serve as providing the baseline. The solid lines show slope values obtained under checkerboard

stimulation for a ganglion cell model with spatial subunits of different diameters, ranging from 20 to 150 mm.
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the stimulus squares (Figure 4C). The calculated slope values of

the tail ends of the iso-rate curves were near unity for small

stimulus squares, indicating linear integration, and dropped to

a value slightly above zero, indicating strong, though not always

complete rectification. The transition roughly occurred over

a range up to about 150 mm, suggesting that the spatial scale

of subunits is also approximately in this range. For a more quan-

titative analysis, we compared the experimental data to results

of a simple model simulation that uses circular subunits with

a rectifying nonlinearity under checkerboard stimulation. From

the model, we also calculated the slopes of the iso-rate curves

and found that subunits with diameter from about 50 to

100 mm best captured the course of the experimental data

(Figure 4C). This spatial scale corresponds well to the typical

diameter of bipolar cell receptive fields (Wu et al., 2000; Baccus

et al., 2008), making the direct excitatory input from bipolar cells

a good candidate for the source of the nonlinearities. Indeed,

nonlinear signal transmission from bipolar cells has been sug-

gested to contribute to nonlinearities in ganglion cell receptive

fields (Demb et al., 2001; Ölveczky et al., 2003; Baccus et al.,

2008; Gollisch and Meister, 2008; Molnar et al., 2009) and may

thus underlie the threshold-quadratic nonlinearity apparent in

the iso-latency curves and in many of the iso-rate curves.

Smaller model subunits of 20 mm diameter, which are still larger

than typical salamander photoreceptors (Mariani, 1986; Sherry

et al., 1998), are not consistent with the experimental data (Fig-

ure 4C), indicating that the nonlinearities do not occur on the

level of photoreceptor signals.

Spike Patterns along Iso-Response Curves
Although static nonlinear signaling of bipolar cells may underlie

the threshold-quadratic nonlinearity, it cannot explain the
338 Neuron 73, 333–346, January 26, 2012 ª2012 Elsevier Inc.
striking difference between the shapes of iso-rate and iso-

latency curves for homogeneity detectors. To build an intuition

for the processes that give rise to this surprising discrepancy,

we analyzed the temporal response profiles for different stimuli

along the iso-response curves (Figure 5). To do so, wemeasured

iso-response curves and then chose three characteristic points

on the curves for repeated measurements of the corresponding

stimuli in randomized fashion.

For cells with similar iso-rate and iso-latency curves, we found,

as expected, that response patterns had virtually identical

temporal structure along iso-rate curves (Figure 5A). For homo-

geneity detectors, we first consider stimuli that lie along an

iso-latency curve (Figure 5B). As a stronger stimulus typically

leads to shorter latency (Figure 2D) (Sestokas et al., 1987), the

iso-latency condition means that the different stimulus layouts

initially were equally effective. Subsequently, however, the

activity under stimulation of half the receptive field (Figure 5B,

green and orange lines) did not rise as strongly and last as

long as for homogeneous stimulation (Figure 5B, black line).

Why did the activity not continue in the same way for the two

layouts even though the latency suggested them to be equally

strong? A plausible interpretation is that spike bursts for stimula-

tion of half the receptive field were affected by a suppression

mechanism that became effective shortly after the initial phase

of the spike burst.

This view is consistent with the spike patterns along the

iso-rate curves (Figure 5C). Here, the stimulation of half the

receptive field has to occur at considerably higher contrast to

enforce the same spike count. During the initial response part,

this higher contrast provides a much more potent stimulus,

thus leading to shorter response latencies (Sestokas et al.,

1987). The response to homogeneous stimulation, on the other



Figure 5. Temporal Response Profile along

Iso-Response Curves

(A) Iso-rate curve (left) and spike responses for

three selected stimuli (right) of a ganglion cell with

a convex iso-rate curve. Open circles along the

iso-rate curve denote three stimulus patterns,

which were used for repeated measurements. The

stimuli correspond to iso-response stimuli on

the two axes (stimulation of only one half of the

receptive field center) as well as on the lower-left

diagonal (homogeneous stimulation of the recep-

tive field center), so that they produced the same

spike count on average. The three stimuli were

each presented randomly interleaved at least 50

times each. Subsequently, the average spike

counts were checked, and the contrast values

were adjusted to minimize residual differences in

spike counts so that actual applied stimuli might

deviate slightly from the original iso-response

curve. Raster plots on the right show spikes from

15 repeats of each of the three stimuli. Peri-

stimulus time histograms, shown below, were

calculated by convolving the spike patterns with

a Gaussian curve of 5 ms standard deviation and

averaging over trials.

(B) As (A), but for three iso-latency stimuli of

a homogeneity detector with nonconvex iso-rate

curve.

(C) As (B) for a second homogeneity detector, but

measured for three iso-rate stimuli.
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hand, starts later and reaches a smaller peak firing rate, corre-

sponding to the much smaller applied contrast. But it compen-

sates by the slightly longer response duration, presumably due

to less suppression, to reach the same average spike count.

We thus hypothesize that a suppression mechanism acts on

homogeneity detectors for strong local stimulation. Note that

local stimulation refers to activation of half the receptive field

center in our standard stimulus layout, but strong stimulation in

smaller regions also triggers the suppression (Figure 3F). The

suppression can be viewed as a local gain control: it reduces

the gain when stimulation is strong in a local subregion of the

receptive field, corresponding to a strong activation of a subset

of available bipolar cells. When stimulation is distributed over all

available bipolar cells, but locally weaker, suppression is less
Neuron 73, 333–346
effective and gain stays high. Further-

more, this local gain control can be

viewed as a dynamic process; it affects

the later part of the spike burst, but not

its initial phase, which determines the

first-spike latency. In the following, we

test neuronal mechanisms that may

implement such a dynamic local gain

control mechanism.

Mechanisms of Local Gain Control
A first candidate mechanism for local

gain control in homogeneity detectors

is synaptic depression at bipolar cell

terminals. Indeed, bipolar cell signals
can display substantial depression (Burrone and Lagnado,

2000; Singer and Diamond, 2006), which could partly suppress

responses to strong local activation. When activation is distrib-

uted over more bipolar cells, on the other hand, as in the case

of homogeneous receptive field activation, synaptic depression

is likely to be less effective and thus should permit longer spike

bursts. We therefore tested whether homogeneity detectors

are cells with particularly strong local adaptation, as would result

from synaptic depression. To do so, we used a stimulus that

aimed at predepressing synapses in one half of the receptive

field. We assessed the effect of this predepression on the

iso-rate curves by a brief activation of one receptive field half

shortly before each stimulus of the iso-rate-curve measurement

(Figure 6A).
, January 26, 2012 ª2012 Elsevier Inc. 339



Figure 6. Experimental Test for the Role of Synaptic Depression

(A) Sample recording trace and stimulus layout. The actual iso-response stimulus was preceded by a fixed predepression stimulus (contrast =�40%) presented

on one half of the receptive field.

(B) Results for a cell with convex iso-rate curve under control conditions (blue) and in the presence of the predepression stimulus (green). Target response: four

spikes.

(C) Same as (B), but for a homogeneity detector with nonconvex iso-rate curve. Target response: six spikes.
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As expected, the predepression stimulus reduced sensitivity

of the ganglion cells, which is reflected by the increased radius

of the iso-rate curves (Figures 6B and 6C) as compared to the

control condition without the predepression stimulus. The reduc-

tion in sensitivity may contain both global and local components;

a symmetric scaling of the predepressed iso-rate-curve radius

along all directions reflects a global loss in sensitivity, whereas

an asymmetric scaling provides evidence for a local loss in

sensitivity and thus a local adaptation mechanism. If the non-

convex iso-rate curves of the homogeneity detectors were to

result from particularly strong synaptic depression, this asym-

metric scaling should be particularly strong for these cells.

However, this was not supported by the experimental data. In

fact, homogeneity detectors typically displayed rather global

adaptation effects and less local sensitivity loss (Figure 6C)

than cells with a convex iso-rate curve (Figure 6B). Synaptic

depression is thus not a plausible mechanism for the particular

features of homogeneity detectors.

As an alternative model, we explored whether local inhibitory

signaling could mediate a local gain control. To test the role of

inhibition, we pharmacologically blocked all inhibitory synaptic

transmission in the retina and then repeated the measurement

of the iso-rate curve. The inhibition block had a dramatic effect

on the curves (Figure 7A). First, it strongly reduced their radius,

corresponding to an overall increase in sensitivity, as expected

from the general lack of inhibition. Second, it gave the iso-rate

curves of homogeneity detectors a convex shape, similar to

the typical iso-response curves of other ganglion cells (Figures

3A and 3B). To quantify this effect, we again computed form

factors of the iso-rate curves and found that for all four tested

homogeneity detectors, the form factor changed from values

below unity in control conditions (range 0.44–0.79) to values

above unity under inhibition block (range 1.05–1.60).

The loss of the nonconvex shape of the iso-rate curve is not

a result of the reduced contrast level in these inhibition block

experiments. When we decreased the radius of the stimulation

area in order to reduce the effectiveness of the applied stimuli,
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the required contrast levels returned to the range of the control

experiment, but the iso-rate curves still remained convex under

the inhibition block (Figure 7B). Note that simply reducing the

stimulation area without inhibition block did not affect the non-

convex shape of the iso-rate curves (Figure 3F). These results

suggest that local inhibitory signaling is responsible for the non-

convex shape of the iso-rate curves of homogeneity detectors.

This leads us to a simple circuit model for these cells (Fig-

ure 7C). They receive excitatory input from bipolar cells, which

have smaller receptive fields and therefore constitute the sub-

units. The bipolar cell signals undergo a threshold-quadratic

nonlinear transformation before they are pooled by the ganglion

cell. In addition, the bipolar cells activate local amacrine

cells, which provide inhibition either directly to the ganglion cell

or as feedback to the bipolar cells. This inhibition operates

as the hypothesized dynamic local gain control. To do so, it

must come with a temporal delay as compared to the excit-

atory input to the ganglion cell, and it must have a high threshold

or otherwise strongly nonlinear dependence on local stimulus

intensity. The temporal delay lets the ganglion cell fire its first

spike without the influence of this inhibition so that iso-latency

curves simply reflect the fundamental threshold-quadratic

nonlinearity of bipolar cell signaling. The strongly nonlinear

dependence on stimulus contrast leads to disproportionally

larger inhibition when the stimulus is locally strong. This means

that, even if the total excitation provided by the bipolar cells is

equal for a homogeneous stimulus and for a stimulus that

activates only half the receptive field, the latter will incur more

inhibition and thus produce fewer spikes. This corresponds to

the situation along an iso-latency curve (Figure 5B). Along an

iso-rate curve (Figure 5C), the excess inhibition under stimulation

of half the receptive field has to be compensated by stronger

stimulation, leading to the characteristic nonconvex shape of

the iso-response curve.

Indeed, simulating this model circuit reproduces the charac-

teristics of the iso-latency curve as well as of the iso-rate curves

with and without inhibition block (Figure 7D). The simulation



Figure 7. Experimental Test for the Rele-

vance of Inhibition

(A) Iso-rate curves for two different homogeneity

detectors under control conditions (blue) and in

the presence of a pharmacological block of inhi-

bition (orange). Iso-rate curves became convex

when inhibition was removed from the circuit.

Target response: six spikes for all curves.

(B) Iso-rate curves for the same cells as in (A), but

for stimulation area with diameter reduced by 65%

under the inhibition block (green). Target

response: six spikes for all curves. Control curves

(blue) are the same as in (A).

(C) Circuit model for homogeneity detectors.

Bipolar cells (B) are assumed to represent contrast

in a linear fashion. Their output undergoes

a threshold-quadratic nonlinearity and excites the

ganglion cell (G) as well as narrow-field amacrine

cells (A). The inhibition provided by the amacrine

cells is delayed in time, here through a temporal

low-pass filter (LP), and undergoes a further

nonlinear transformation, here again of the

threshold-quadratic type. The inhibition may act

directly on the ganglion cell or on the bipolar cell

signal.

(D) Iso-response curves obtained by modeling the

circuit shown in (C). The inhibition block was

simulated by taking the amacrine cells out of the

circuit; the orange curve then shows the obtained

iso-rate curve for the standard stimulus layout, the

green curve for a stimulus area with diameter

reduced by 50%.

(E) Iso-response curves obtained from the model

for different target spike counts. For predictions of

the same model under stimulation with reversing

gratings, see Figure S1.
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also shows that the nonconvex shape of the iso-rate curves

becomes more pronounced for larger target spike counts

(Figure 7E), similar to experimental observations (Figure 3E).

This follows because the higher required visual contrast for
Neuron 73, 333–346
reaching a higher spike count activates

disproportionally more inhibition and

thus leads to a stronger gain control

effect.

DISCUSSION

Individual neurons typically integrate

multiple input components. How they

perform this integration is a major factor

in determining their computational

function. Here, we have suggested to

study neuronal integration by measuring

iso-response stimuli (Figure 1) and

applied this concept to the question

how retinal ganglion cells integrate visual

stimuli over their receptive field centers.

The dominant nonlinearity that was

extracted from these measurements

was a threshold-quadratic transforma-
tion, which was apparent in all measured iso-latency curves

and many iso-rate curves (Figure 3). This nonlinearity occurred

on a spatial scale that is consistent with bipolar cell receptive

fields (Figure 4). Furthermore, a specific subclass of cells
, January 26, 2012 ª2012 Elsevier Inc. 341



Figure 8. Implications of Spatial Nonlinear-

ities for Image Processing

(A) Sample image, consisting of a large homoge-

neous low-contrast object and a region with

multiple small high-contrast objects.

(B) Model of ganglion cell processing of the image.

The image is tiled by the spatial receptive fields of

an array of identical ganglion cells. Each ganglion

cell’s receptive field is divided into a 53 5matrix of

spatial subunits. The subunits are Off-type and

linearly integrate the stimulus in their receptive

field regions. Their outputs are passed through

a nonlinearity and summed by the ganglion cell. In

the following image reconstructions, white pixels

correspond to a ganglion cell output of zero

spikes, and black pixels correspond to the

maximum ganglion cell spike count.

(C) Image reconstruction with linear summation of

subunit activity (left) and corresponding iso-

response curve (right). The grid exemplarily shows

the layout of the ganglion cell array; each square

corresponds to a receptive field that contains the

5 3 5 matrix of subunits.

(D) Image reconstruction with a threshold-

quadratic nonlinearity applied to the subunit

signals (left) and corresponding iso-response

curve (right). The region containing small high-

contrast objects is amplified.

(E) Image reconstruction with a subunit nonline-

arity composed of a threshold and a square-root

transformation (left). This nonlinearity can be used

to qualitatively approximate the effect of the nonconvex iso-rate curve observed in homogeneity detectors (right), but it does not aim at capturing the time course

of the response, latency effects, or the dependence of iso-rate curves on target spike count (Figure 3E). Now, the region of the homogeneous low-contrast object

is amplified.
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displayed iso-rate curves that fundamentally differed in shape

from the iso-latency curves and were characterized by a partic-

ular sensitivity of the spike count for homogeneous stimulation

(Figure 3C). For these homogeneity detectors, the difference

between iso-latency and iso-rate curves appeared to result

from a partial suppression of activity when strong local stimula-

tion in a subregion of the receptive field was involved (Figure 5).

This pointed toward a dynamic local gain control mechanism,

which was found to be mediated by a local inhibitory circuit

(Figure 7), whereas a scenario based on synaptic depression

was not consistent with data (Figure 6). The critical role of inhibi-

tion for homogeneity detectors further supports the hypothesis

of a suppressive mechanism that acts on the spike burst for

strong local stimulation. Alternative schemes in which responses

might be actively boosted under homogeneous stimulation

seem less congruent with a mechanism based on inhibition.

Iso-Response Measurements Provide a Powerful Tool
for Analyzing Stimulus Integration
The measurements of iso-response stimuli proved very suited

to identify the details of these nonlinearities in ganglion cell

receptive fields. First, it required only measurements of spike

times from the ganglion cells. These can be obtained in long

and stable extracellular recordings, which allowed for detailed

characterizations. Second, these measurements could be

performed quite efficiently by using automated online analysis

and closed-loop control of the stimulation. A measurement of
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a single iso-response curve of the type in Figure 3 required

around 15 min, which allowed us to use the obtained results in

the same experiment for further investigations, such as the

detailed PSTH measurements of Figure 5 or comparisons of

iso-response curves under different conditions (Figures 3, 4, 6,

and 7). Third, the iso-response measurements can assess

nonlinearities of stimulus integration by retinal ganglion cells

independent of the cell’s intrinsic nonlinear processing. This

cell-intrinsic nonlinearity implicates, for example, that it is

typically not possible to check for linear summation of inputs

by comparing the response for multiple simultaneous stimulus

components to the sum of responses for the individual compo-

nents. Such a measurement would require an accurate model

of cell-intrinsic signal processing in order to tease apart the

different nonlinearities that ultimately affect the response.

Fourth, focusing on a fixed response level naturally keeps the

neuron close to a constant adaptation level and thus minimizes

confounding adaptation effects, as might result from sporadi-

cally driving the neuron at particularly high firing rates.

And fifth, iso-response stimuli seem a natural way for investi-

gating the dimensional reduction that results when neurons

integrate several inputs and map these inputs onto a low-dimen-

sional response, such as the neuron’s spike count. A funda-

mental consequence is that different input patterns will be

mapped onto the same output. This contributes to establishing

invariances, which represent a hallmark of neural compu-

tation (Riesenhuber and Poggio, 2000) and underlie complex



Neuron

Dynamic Nonlinear Integration in the Retina
recognition and decision tasks. It thus appears appropriate to

assess computation at the single-neuron level also by identifying

which stimuli are classified as equal. Indeed, measuring iso-

response stimuli can provide a new perspective on nonlinear

signal integration not apparent in other, standard approaches.

For example, a simplemodel simulation shows that homogeneity

detectors look just like typical Y-type cells for contrast-reversing

gratings (Figure S1 available online), the classical stimulus to test

for nonlinear spatial integration.

A caveat of the closed-loop experiments is that they rely on

accurate online detection of the incoming signals, here the

ganglion cell spikes. Systematic errors in spike detection could,

in principle, lead the search for the predefined response astray.

We avoided such pitfalls by selecting only ganglion cells whose

spikes were sufficiently large for simple and unambiguous

detection through threshold crossing. In addition, we verified

the accuracy of the online spike detection by additional in-depth

offline analysis of the spike waveforms. The selection of large

and reliable spikes, however, may add to a potential recording

bias (Olshausen and Field, 2005); ganglion cell types with small

cell bodies, for example, might not always create spikes with

sufficient size in the extracellular recordings (Towe and Harding,

1970; Olshausen and Field, 2005) to pass our criterion of reliable

spike detection and may therefore be underrepresented in

our analysis. Thus, the observed frequency of homogeneity

detectors, for example, does not necessarily reflect the actual

occurrence in the retina.

Mechanisms Underlying the Threshold-Quadratic
Nonlinearity
The threshold-quadratic nonlinearity appears to be a general

property of signal integration in the recorded ganglion cells

and presumably corresponds to the nonlinear processing that

had been suggested to underlie several specific visual functions

solved by the retina (Ölveczky et al., 2003; Gollisch and Meister,

2008, 2010; Münch et al., 2009). Thresholding has been con-

sidered previously to lead to nonlinear receptive fields (Shapley

and Victor, 1979; Victor and Shapley, 1979; Demb et al., 2001;

Ölveczky et al., 2003; Geffen et al., 2007; Gollisch and Meister,

2008; Münch et al., 2009), though often a threshold-linear

operation has been hypothesized, rather than the threshold-

quadratic transformation observed in this study. Consistent

with these previous findings, the source of this nonlinearity

appears to be the bipolar cell input into the ganglion cell; the

spatial scale of the nonlinearities fits the receptive field size

of bipolar cells (Figure 4), and this type of nonlinearity is not

affected by a block of inhibitory neurotransmission (Figure 7).

The threshold-quadratic nonlinearity may arise in the voltage

response of individual bipolar cells (Burkhardt and Fahey,

1998) or in the synaptic transmission at the bipolar cell terminals

(Baccus et al., 2008; Molnar et al., 2009). It is noteworthy that

iso-latency curves were more consistent in their shapes and

always clearly displayed the quadratic part of the nonlinearity

(Figure 3G), whereas iso-rate curves, even for cells that were

not classified as homogeneity detectors, sometimes showed

a tendency toward more linear integration (Figure 3H, see also

Figure 3B for an example). This may be explained by local

adaptation, for example, synaptic depression, which somewhat
reduces the efficiency of strong local stimulation during the

course of the spike burst. It is further interesting to note that no

linearly integrating ganglion cells were observed in our study.

This might be a feature of the investigated species; in the cat

retina, for example, X-type cells would be predicted to have

iso-response curves in the shape of straight lines.

Mechanisms Underlying the Local Gain Control of
Homogeneity Detectors
The particular sensitivity to homogeneous illumination of the

receptive field in homogeneity detectors appears to arise from

inhibitory interactions in the circuit. The nonconvex shape of

the iso-rate curves was always abolished by removal of inhibition

from the retinal circuitry, including experiments with reduced

stimulus area so that different ranges of input into the system

were tested. Otherwise, the nonconvex shape proved robust to

changes in stimulus layout and overall activation level. Together

with the success of the computational inhibition model, this

supports a principal role of inhibition for generating the re-

sponse features of homogeneity detectors. The relevant inhibi-

tion must be local in the sense that the considered subregions

of the ganglion cell’s receptive field can activate this inhibition

independently. A possible source is narrow-field amacrine cells

(Masland, 2001; Chen et al., 2010). The iso-latency curves

were not affected by the inhibitory mechanism that underlies

the gain control; iso-latency curves always depicted the stan-

dard threshold-quadratic nonlinearity. This can simply be ex-

plained by a temporal delay of inhibition, resulting from involve-

ment of an additional synaptic stage as compared to the direct

excitation from bipolar cells (Werblin and Dowling, 1969; Roska

et al., 2006; Cafaro and Rieke, 2010). Note that the inhibitionmay

act as a direct input into the ganglion cells or indirectly by sup-

pressing or modulating the bipolar cell output; the functional

characterizations of the present study do not distinguish

between these circuit features.

The inhibition makes strong local stimuli that involve only

a subset of available bipolar cells less effective, or in other

words, it creates a particular sensitivity for spatially homoge-

neous stimulation when the activity load is shared between all

available bipolar cells with weaker individual activation. The

characteristic notch in the iso-rate curves of homogeneity detec-

tors can thus be explained completely by local sensitivity

changes without the need to evoke a direct interaction between

the subregions of the receptive field. Interestingly, an example

for the required strongly nonlinear activation of inhibition has

recently been found in paired recordings of certain amacrine

cells and their presynaptic bipolar cells (Jarsky et al., 2011).

The disproportionally stronger activation of inhibition for stronger

stimulation also explains why the iso-rate curve shapes differ for

different target spike counts. The effect of inhibition becomes

stronger with stronger stimulation, and consequently the notch

in the iso-rate curves becomes more pronounced with larger

target spike counts (Figure 3E and 7E).

Functional Consequences of Different Nonlinearities
for Stimulus Integration
The striking differences between different ganglion cells in the

nonlinearities of signal integration raise the question of the
Neuron 73, 333–346, January 26, 2012 ª2012 Elsevier Inc. 343
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associated visual functions. To illustrate the effects of the ob-

served receptive field nonlinearities, let us therefore consider

a simple visual stimulus, which contains a large dim object as

well as a group of several small objects at high contrast (Fig-

ure 8A). When viewed through linear receptive fields, both the

large dim object and the area with the small high-contrast

objects appear equally prominent (Figure 8C). Receptive fields

that integrate their subunits with a threshold-quadratic nonline-

arity, however, emphasize the high-contrast region (Figure 8D),

whereas nonlinear integration in the fashion of homogeneity

detectors facilitates the detection of the large dim object while

being insensitive to high-contrast clutter (Figure 8E).

This suggests that homogeneity detectors contribute particu-

larly to the detection of large objects. In fact, these cells typically

had rather large receptive field centers (Figure 3I) and no or only

weak receptive field surround—features that had also been

described previously for certain ganglion cells of the frog retina,

so-called dimming detectors (Ishikane et al., 1999, 2005). Those

studies had suggested that these cells detect large approaching

objects through synchronized oscillatory activity and thereby

trigger the frog’s escape response to dark looming objects. It

is conceivable that this detection of slowly approaching objects

works in concert with the detection of suddenly appearing

large objects proposed in the present study, thus mediating

detection of large, potentially threatening objects over a wide

range of behavioral scenarios by a single ganglion cell type in

the amphibian retina. Inhibitory signaling appears to be critical

for both mechanisms, and indeed, it was shown that the frog’s

natural escape behavior to large objects is suppressed when

inhibition is blocked in the frog’s eyes (Ishikane et al., 2005).
Applicability to Other Parts of the Nervous System
The circuit structure proposed to generate the local gain control

of homogeneity detectors (Figure 7C) is not unique to the retina.

Similar parallel transmission pathways of excitation and inhibi-

tion have also been identified elsewhere in the brain (Porter

et al., 2001; Pouille and Scanziani, 2001; Gabernet et al., 2005;

Sun et al., 2006; Cruikshank et al., 2007; Strowbridge, 2009;

Bellavance et al., 2010). Measuring iso-response stimuli in

these systems by stimulating local subcircuits independently

could be used to probe their functional roles and the potential

implementation of a similar local gain control. Moreover, we

suggest that measurements of iso-response stimuli can function

as a general tool to identify the rules of signal integration in a

wide variety of neural systems wherever different signaling

streams converge onto single neurons.
EXPERIMENTAL PROCEDURES

Electrophysiology and Visual Stimulation

Retinas were isolated from dark-adapted adult axolotl salamanders

(Ambystomamexicanum; pigmented wild-type) and mounted onto 60 channel

multielectrode arrays for extracellular recordings of ganglion cell spiking

activity. All experimental procedures were performed in accordance with

institutional guidelines of the Max Planck Society. During the recordings,

retinas were superfused with oxygenated Ringer’s solution at room tempera-

ture (20�C–22�C). For experiments with pharmacological inhibition block,

strychnine (5 mM), picrotoxin (150 mM), and bicuculline (20 mM) were added

to the Ringer’s solution. Visual stimuli were displayed by a gamma-corrected
344 Neuron 73, 333–346, January 26, 2012 ª2012 Elsevier Inc.
cathode ray tube monitor and focused onto the retina with standard optics.

Mean light intensities were in the photopic range, and all stated contrast values

correspond to Weber contrast (Istimulus – Ibackground) / Ibackground. Ganglion cells

were classified as either On-type or Off-type, based on their spike-triggered

average obtained from recordings under stimulation with spatially uniform

broadband flicker (Chichilnisky, 2001). Details of the recordings and stimula-

tion can be found in Supplemental Experimental Procedures.

Closed-Loop Measurements

Data acquisition was controlled with custom-made software, written in Visual

C++. Incoming data were both stored for offline analysis as well as directly

processed in an online fashion. After visual inspection of the voltage signals

of all available channels, one channel was selected that displayed large, homo-

geneous spike shapes. For this channel, an amplitude threshold was deter-

mined, based on a 1min recording under stimulation with broadband flickering

light intensity, to separate spikes from background noise (Figure 2B). Only

units whose spike amplitudes were well separated from the noise and that

showed a clear refractory period were used for further investigation. To verify

that the simple online spike detection and sorting workedwell, we occasionally

performed additional offline analysis spike sorting, based on the detailed spike

shapes (Pouzat et al., 2002). This confirmed the results obtained directly from

the online analysis.

To identify the spatial receptive field of a recorded ganglion cell, we first

used online analysis to find themidlines of the receptive field in two orthogonal

directions. Each midline was determined by dividing the stimulation area by

a separation line and comparing responses from stimulation on each side of

the line individually. The separation line was then iteratively adjusted until

both sides yielded the same response. Finally, receptive field size was deter-

mined with blinking spots centered on the crossing point of the two identified

midlines.

To measure an iso-response curve, we first selected a predefined response

(either average spike count or average first-spike latency). The response

selection typically aimed at requiring around 30%–70% contrast for the

predefined response from stimulation of one receptive field half alone. Using

this range largely avoided coming too close to the physical limit of 100%

contrast along the iso-response curve and at the same time provided enough

contrast for reliable spike responses. Each data point of an iso-response curve

was then obtained by performing a simple line search along a radial direction

in stimulus space. Details about the closed-loop experiments and search

algorithms are given in Supplemental Experimental Procedures.

Analysis of Iso-Response Curve Shape

We quantitatively analyzed the shape of the iso-response curves in two ways.

To determine the degree to which curves were convex or nonconvex (Figures

3G–3I), we calculated form factors that compare the central region of the iso-

response curve to the linear prediction that is obtained from the two intersec-

tion points of the curve with the axes. The form factor is larger or smaller than

unity, depending on whether the iso-response curve is convex or nonconvex,

respectively. To assess the amount of rectification (Figure 4C), we calculated

the average slope of each iso-rate curve in the regions where one contrast

component was negative and the other positive. The slope values were calcu-

lated in such a way that zero corresponds to complete rectification whereas

a value of unity corresponds to linear summation of s1 and s2. Details of these

quantifications can be found in Supplemental Experimental Procedures.

Modeling

Subunit Nonlinearity

To obtain the nonlinearities for the subunit model (insets in Figures 3A–3C), we

calculated the ganglion cell response as aweighted sumof two inputs. The two

inputs were generated from the respective stimulus components s1 and s2 by

the same nonlinear function NðsiÞ. This function is parameterized as a power

law for preferred stimuli with potentially incomplete rectification of nonpre-

ferred stimuli. We determined the parameters of the nonlinear function for

individual iso-response curves by a maximum-likelihood fit.

Subunit Size

To investigate the effect of subunit size on rectification in the iso-response

curves for stimuli arranged in a checkerboard fashion (Figure 4C), we modeled
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a ganglion cell with 600 mm receptive field diameter, composed of circular

subunits with varying sizes. Each subunit integrated the visual signal linearly

and transmitted the result through a threshold-quadratic nonlinearity with

incomplete rectification to the ganglion cell. The ganglion cell’s response

was computed as a weighted sum over all subunit inputs, with weights

determined by a Gaussian curve, centered on the midpoint of the ganglion

cell receptive field. These responses were used to compute the slope of the

iso-response curve in the same way as for the experimentally measured data.

Homogeneity Detectors with Local Inhibitory Circuitry

To quantitatively test the hypothesized circuit for homogeneity detectors

based on local inhibition (Figure 7C), we set up a model with two subunits

that correspond to the inputs from each half of the receptive field. Each subunit

comprises a bipolar cell and an amacrine cell. The bipolar cell transmits

the contrast signal of its respective receptive field half as excitatory input to

the homogeneity detector through a threshold-quadratic synaptic nonlinearity.

The amacrine cell receives the same excitatory input from the bipolar cell

and provides inhibition through another threshold-quadratic nonlinearity. In

addition, the amacrine cell signal is low-pass filtered to account for the

temporal delay. From the integrated input to the homogeneity detector, we

calculated iso-rate and iso-latency curves (Figures 7D and 7E).

Details of the models are provided in Supplemental Experimental

Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes one figure and supplemental text and can

be found with this article online at doi:10.1016/j.neuron.2011.10.039.
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