Nompc TRP Channel Is Essential for Drosophila Sound Receptor Function

Thomas Effertz,1 Robert Wiek,1 and Martin C. Göpfert1,*

1Department of Cellular Neurobiology, University of Göttingen, Max Planck Institute for Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany

Summary

The idea that the Nompc TRPN1 channel is the Drosophila transducer for hearing has been challenged by remnant sound-evoked nerve potentials in Nompc nulls [1–5]. We now report that Nompc is essential for the function of Drosophila sound receptors and that the remnant nerve potentials of Nompc mutants are contributed by gravity/wind receptor cells. Ablating the sound receptors reduces the amplitude and sensitivity of sound-evoked nerve responses, and the same effects ensued from mutations in Nompc. Ablating the sound receptors also suffices to abolish mechanical amplification, which arises from active receptor motility [6, 7], is linked to transduction [8], and requires Nompc [9]. Calcium imaging shows that the remnant nerve potentials in Nompc mutants are associated with the activity of gravity/wind receptors and that the sound receptors of the mutants fail to respond to sound. Hence, Drosophila sound receptors require Nompc for mechanical signal detection and amplification, demonstrating the importance of this transient receptor potential channel for hearing and reviving the idea that the fly’s auditory transducer might be Nompc.

Results and Discussion

Ever since Nompc (also known as TRPN1) was implicated in Drosophila touch sensation [10], it has been speculated that this transient receptor potential (TRP) channel could be one of the elusive touch channels for hearing [2–5, 11]. First, bearing a predicted pore region and an N-terminal ankyrin spring, Nompc seems structurally qualified for being a gating spring-operated ion channel as implicated in auditory transduction [12–17]. And second, though displaying a rather spotty phylogenetic appearance [18], Nompc is required for the function of certain Drosophila and nematode mechanoreceptors [10, 19–21] and zebrafish hair cells [22]. Nompc is also expressed in hair cells of frogs [23] and in mechanoreceptors of the Drosophila ear [24–27], but even though Nompc demonstrably can serve as mechanotransduction channel [21], its importance for auditory transduction and hearing remains uncertain: in frog hair cells, Nompc localizes to kinocilia [23] that are dispensable for transduction [28]. And in the Drosophila ear, loss of Nompc function reduces the amplitude of sound-evoked afferent nerve responses by only approximately one-half [1, 25].

A possible explanation for the mild latter effect has emerged with the recent discovery that the antennal hearing organ of Drosophila, Johnston’s organ (JO), houses sound and gravity/wind receptors: about half of the fly’s approximately 480 JO receptor cells preferentially respond to dynamic antennal vibrations and serve sound detection, whereas the other half preferentially respond to static antennal deflections and mediate the detection of gravity and wind [24, 25, 29]. Driving reporter genes via a nompc-Gal4 promoter fusion construct only labeled the sound receptors [24], suggesting that the sound-evoked nerve potentials that persist in Nompc mutants may be contributed by Nompc-independent JO gravity/wind receptor cells [5, 24, 30]. nompc-Gal4, however, reproduces endogenous Nompc expression only partially, and an antibody detected Nompc protein in virtually all receptors of JO [26]. To explore whether the two JO receptor types nonetheless differ in their nompc dependence, we here analyzed JO function in nompc mutants and in flies with ablated sound or gravity/wind receptor cells.

To selectively ablate JO sound or gravity/wind receptors, we expressed UAS-ricin toxin A [31] in these cells using receptor type-specific GAL4 drivers [24, 32, 33] in conjunction with the ey-FLP/FRT system [34] to restrict toxin expression to GAL4-expressing cells in the antenna and eye. To assess JO function, we exposed the flies to pure tones of different intensities and simultaneously monitored the resulting mechanical input and electrical output of JO. The mechanical input was measured as sound-induced displacement of the antenna’s arista [35, 36], whereas the electrical output was recorded in the form of sound-evoked compound action potentials (CAPs) from the receptor axons in the antennal nerve [37]. The frequency of the tones was adjusted to the mechanical best frequency of the antenna, which was deduced from the power spectrum of the antenna’s free fluctuations [9, 36] (see Figure S1 available online). The intensity of the tones was measured as the sound particle velocity at the position of the fly [35, 36].

Residual Sound-Evoked Nerve Potentials in nompc Mutants and Flies with Ablated Sound Receiver Cells

In accord with previous observations [1], we found that remnant sound-evoked nerve potentials persist in Nompc nulls: varying the sound particle velocity between approximately 0.001 and 10 mm/s evoked CAPs in Nompc2 and Nompc3 null mutants whose maximum amplitudes were ~6 times smaller than those of the wild-type and controls (Figure 1A). Mutant flies carrying the weaker allele nompcD displayed equally reduced CAP amplitudes, but the amplitudes were normal when we expressed a UAS-nompc-L rescue construct [29] in all JO receptors of Nompc3 nulls (Figure 1A). Reduced CAP amplitudes as observed in Nompc mutants also ensued from the targeted ablation of JO sound receptors (Figure 1A). When JO gravity/wind receptors were ablated, however, CAP amplitudes remained normal, resembling those of wild-type flies and controls (Figure 1A). Hence, sound-evoked potentials in the fly’s antennal nerve are not only contributed by JO sound receptors: if these receptors are ablated, residual CAPs persist whose amplitudes resemble those of Nompc nulls.
Flies with Ablated Sound Receptors and nompC Mutants Lack Sensitive Hearing

Mutations in nompC, in addition to reducing sound-evoked nerve potentials, impair sensitive hearing. This reduction in auditory sensitivity became apparent when we plotted the relative CAP amplitudes against the corresponding sound-induced antennal displacement (Figure 1B). In wild-type and control flies, antennal displacements equal to or greater than ~50 nm were sufficient to elicit CAPs, and the CAP amplitude increased monotonously for displacements between approximately 50 and 600 nm (Figures 1B and 1C). In nompC mutants, this dynamic range of the CAP response consistently shifted up to antennal displacements between approximately 160 and 2000 nm, corresponding to an ~3-fold sensitivity drop (Figures 1B and 1C). This sensitivity drop, which was rescued by expressing UAS-nompC-L in the JO receptors of nompC3 mutants, was also observed in flies with ablated JO sound receptor cells (Figures 1B and 1C). When the gravity/wind receptors were ablated, however, auditory sensitivity remained unchanged (Figures 1B and 1C).

When we plotted the relative CAP amplitudes against the sound particle velocity instead of the antennal displacement, the sensitivity drop observed in nompC mutants and flies with ablated sound receptors was even more pronounced, assuming figures around 10 (Figure S2): in these flies, the dynamic range of the CAPs spanned particle velocities between approximately 0.4 and 6 mm/s, whereas it spanned between approximately 0.03 and 1 mm/s in flies with ablated gravity/wind receptors, wild-type flies, and controls. Accordingly, loss of nompC function and loss of sound receptor function reduce both the sensitivity of JO to antennal displacements and, in addition, the mechanical sensitivity of the antenna to sound.

Mechanical Amplification of Antennal Vibrations Requires NompC and Sound Receptor Cells

To assess the mechanical sensitivity of the antenna, we determined how its displacement varies with sound intensity. In wild-type and control flies, the antenna’s displacement non-linearly increased with sound particle velocity (Figure 2A), displaying a compressive nonlinearity that, arising from mechanical activity of JO receptors [8, 9], enhanced the mechanical sensitivity ~8-fold when sound was faint (Figure 2B). Consistent with previous observations [9], we found that this nonlinear mechanical amplification was lost in nompC mutants, rendering their antennae mechanically less sensitive to acoustic stimuli so that louder sounds were required to displace their antennae by a given distance, in addition to the larger antennal displacements that were required to elicit CAPs in their antennal nerves (Figures 1B and 1C; Figure S2). We also found that this nonlinear amplification could be rescued by expressing UAS-nompC-L in JO receptors and...
that it specifically required JO sound receptor cells: ablating only the sound receptors abolished mechanical amplification, and the same effect was caused by mutations in nompC (Figures 2A and 2B). In nompC mutants, this loss of amplification was associated with alterations of the antenna’s tuning and fluctuation power that were quantitatively mimicked in flies with ablated sound receptor cells (Figure S1). If the gravity/wind receptors were ablated, however, mechanical amplification remained normal, with the antenna’s compressive nonlinearity, its tuning, and its fluctuation power resembling those of wild-type, nompC-L rescue, and control flies (Figure 2A; Figure S1). Hence, nonlinear mechanical amplification in the Drosophila ear requires both the NompC channel and JO sound receptors but is independent of JO gravity/wind receptor cells.

Sound Receptors, but Not Gravity/Wind Receptors, Need NompC
Ablating JO sound receptors phenocopies the auditory defects of nompC mutants (Figure 1; Figure 2), suggesting that NompC is essential for the mechanosensory function of these cells. To test this hypothesis, we monitored mechanically evoked calcium signals in the somata of JO receptors of nompC^2 null mutants and controls while simultaneously recording the displacement of the antenna and the ensuing CAPs from the antennal nerve. Calcium signals were measured through the cuticle of the antenna using the genetically encoded ratiometric calcium sensor Cameleon2.1 (Cam2.1) [24, 38, 39]. To evoke calcium signals, we sinusoidally actuated the antenna at its mechanical best frequency with electrostatic force (for the equivalence of electrostatic and acoustic actuation, see [37]).

When we expressed Cam2.1 in either the sound receptors alone or all JO receptors, antennal vibrations evoked robust calcium signals in controls (Figure 3A). The calcium signals of the sound receptors were entirely abolished in nompC^2 mutants, but when we expressed Cam2.1 in all of their JO receptors, small calcium signals were detected that closely resembled those of the gravity/wind receptors of controls (Figure 3A). To assess the relation between JO calcium signals and antennal nerve potentials, we plotted their respective amplitudes against the antennal displacement (Figures 3B and 3C). The large calcium signals of the sound receptors of controls superimposed with the relative amplitudes of the simultaneously recorded CAPs and the CAPs of flies with ablated gravity/wind receptor cells (Figure 3B). The small calcium signals of the gravity/wind receptors were shifted to larger antennal displacements and superimposed with the CAPs of flies with ablated sound receptor cells (Figure 3B). Calcium signals obtained from all JO receptors of controls had intermediate amplitudes (Figure 3B), identifying them as mixed signals contributed by sound and gravity/wind receptor cells (Figure S3A). The residual CAPs of nompC^2 mutants did not associate with calcium signals in their sound receptors, yet they superimposed with the small calcium signals obtained from all JO receptors of the mutants and from JO gravity/wind receptors of the controls (Figure 3C). Although unsuccessful recombination prevented us from selectively expressing Cam2.1 in the gravity/wind receptors of the mutants, the above findings show that calcium signals that can be ascribed to these receptors are associated with the residual CAPs in nompC nulls. Additional evidence that the calcium signals in the mutants arise from gravity/wind receptors was obtained when we inspected the time course of these signals (Figure 3D): in controls, the onset of the calcium signals of all JO receptors followed two exponentials. The exponential with the larger time constant well fitted the calcium signals of their sound receptors. The exponential with the smaller time...
constant well fitted the calcium signals of their gravity/wind receptors and also those of nompC mutants. Hence, instead of being contributed by JO sound receptors, the residual CAPs of nompC mutants are deemed to reflect the activity of JO gravity/wind receptor cells. 

Judged from the intracellular calcium signals, the responses of JO gravity/wind receptors to sinusoidal forcing are independent of NompC. Because these receptors preferentially respond to static forcing [24, 29], we statically deflected the flies’ antennae and measured the ensuing calcium signals (Figure S3A). In accord with previous observations [24, 29], JO sound receptors hardly responded to antennal deflections, and the calcium signals obtained from all of the JO receptors of nompC mutants were indistinguishable from those of controls (Figure S3A). Hence, whereas NompC is essential for the mechanosensory function of JO sound receptors, the mechanosensory function of JO gravity/wind receptors seems independent of NompC. Because NompC is detectable in the dendritic tips of virtually all JO receptors [26], other proteins may compensate for the loss of NompC in JO gravity/wind receptors. Possibly, both JO receptor types also use different NompC isoforms, which could also explain why certain nompC promoter fusion constructs are selectively expressed in JO sound receptor cells [24]. The isoform NompC-L [20] rescues the auditory defects of nompC mutants and accordingly seems crucial for JO sound receptor function. Determining NompC isoform patterns in JO may help understanding why gravity/wind receptors express, but apparently do not need, this TRP.

Conclusions
We have shown that NompC is essential for the mechanosensory function of Drosophila sound receptors, making this TRP channel a strong candidate for the fly’s auditory mechanotransducer. Precedence that NompC can serve as a mechanotransduction channel comes from work on C. elegans [21], and the importance of NompC for Drosophila auditory transduction is supported by its requirement for nonlinear mechanical amplification: in the Drosophila ear, the source of this amplification has been traced down to mechanotransducers [8] that, judged from the present study, reside in the sound receptors. Loss of amplification in flies with ablated sound receptors and in nompC mutants indicates that these auditory transducers require NompC. Clearly, more work is needed to dissect the specific roles of NompC in auditory transduction, and such dissection now seems most worthwhile given the auditory importance of this TRP.
Experimental Procedures

Flies

The following GAL4 strains were used: J015 [32] and JO2 (also known as NP1046) [33] for targeting sound receptors, JO31 (also known as NP6250) [33] for targeting gravity/wind receptors, and J01 (also known as NP0761) [33] for targeting sound and gravity/wind receptors. Other strains used included UAS-cam2.1 [21, 38, 39] for calcium imaging; eyFLP [34] and UWFTRA19 [31] for ricin-mediated cell ablation; UAS-nompC-L [20] for ectopic NompC expression; the deficiency strain Df(2L)cps2; and the nompC alleles nompC2, nompC3, and nompC4 [10]. Genotypes of the experimental flies were nompC2 cn bw/Df(2L)cps2 or nompC2 cn bw (nompC mutants); nompC2 cn bw/Cy cn (nompC controls); nompC2 cn bw/Df(2L)cps2 or nompC2 cn bw (nompC mutants); nompC2 cn bw/Cy cn (nompC controls); nompC2 cn bw/nompC2 (nompC mutants); nompC2;UAS-NompC-L/nompC2;NP0761/+ (nompC rescue); NP1046; eyFLP/+;JO15/UWFTRA19 (ablation of sound receptors); NP6250;+;eyFLP; UWFTRA19 (ablation of gravity/wind receptors); UAS-cam2.1;JO15/TM6b (cam2.1 expression in sound receptors); NP6250;UAS-cam2.1 (cam2.1 expression in gravity/wind receptors); UAS-cam2.1;NP0761/TM6b (cam2.1 expression in all JO receptors); nompC2;JO15/UAS-cam2.1 (cam2.1 expression in JO sound receptors in nompC3 background); and nompC2;NP0761/UAS-cam2.1 (cam2.1 expression in all JO receptors in nompC3 background). Cell ablations were confirmed by coexpressing a UAS-GFP reporter as described previously [24].

Antennal Vibrations and CAPs

Antennal vibrations were evoked acoustically or electrotically via an external electrode placed behind the tip of the antennal arista [8, 24, 37]. Sound particle velocities were accessed with an Emkay NR 3158 pressure-shear-gate microphone as described previously [36]. Antennal displacement were monitored at the tip of the antenna’s arista with a Polyscope PSV-400 laser Doppler vibrometer equipped with an OFV-700 closeup unit (70 mm focal length) [36]. CAPs were recorded with an electrolytically tapered tungsten electrode inserted between antenna and head, with the indifferent electrode being placed in the thorax [37]. Signals were digitized at a rate of 12.1 kHz and subjected to fast Fourier transforms (1 Hz frequency resolution). Signal amplitudes were measured as Fourier amplitudes at the stimulus frequency because of their frequency doubling [37]. Data analysis and statistical data evaluation were performed using PSV-VIB (Polytec), Spike 2 (Cambridge Electronic Design), Excel 2004 (Microsoft), and SigmaPlot 10 (Systat Software).

Calcium Signals

Transluciting calcium of intracellular calcium signals was performed as described previously [39]. A Cameleon two-filter set (455 nm DCLP, 515 nm DCLP, 535/20 nm emission filter, 485/40 nm emission filter; Chroma Technology) and a dual view beam splitter (Photometrics D2G) were used for detecting the eYFP and eCFP images simultaneous with a charge-coupled device camera (Photometrics Cascade II:512).

Supplemental Information

Supplemental information includes three figures and can be found with this article online at doi:10.1016/j.cub.2011.02.046.

Acknowledgments

We thank Daniel Eberl for JO15; Li Cheng and Yuh Nung Jan for UAS-NompC-L; Barry Dickson for eyFLP; Cahir O’Kane for eyFLP; Barry Dickson for eyFLP; Bechstedt, S., and Howard, J. (2007). Models of hair cell mechanotransduction. Curr. Top. Membranes 59, 399–424.

References

27. Liang, X., Madrid, J., Saleh, H.S., and Howard, J. (2011). NOMP, a member of the TRP channel family, localizes to the tubular body and
distal cilium of Drosophila campaniform and chordotonal receptor cells. Cytoskeleton (Hoboken) 68, 1–7.